CPE210 vs CPE510 \(P_\mathrm{rx}\)#
The goal is to choose the one with a better range using the datasheet.
The datasheet is available on this page. For the calculations, I used this version of the datasheet.
Relevant data:
Frequency on PDF page 5
Transmit power on PDF page 5
antenna gain on PDF page 4
Using these, we can calculate the receive power \(P_\mathrm{rx}\).
CPE210_F = 2.44e6 # Hz (took the middle frequency)
CPE510_F = 5.155e6 # Hz
CPE210_P_TX = 25 # dB
CPE510_P_TX = 26 # dB
CPE210_G_TX = 9 # dBi
CPE510_G_TX = 13 # dBi
DISTANCE = 20 # km
from dataclasses import dataclass
from sympy import log, symbols, sympify
import pandas as pd # For tabular viewing of results
I used the symbolic math library, SymPy, to view the formulas more clearly.
Let us define FSPL first:
def fspl(d, f):
return 20 * log(d, 10) + 20 * log(f, 10) - 147.55
d, f = symbols("d f")
# d and f will be math symbols instead of ordinary variables
fspl(d, f)
Put the properties into a class and create devices with their properties.
@dataclass
class Device:
f: float
tx_power: float
gain: float
def p_rx(self, d):
return self.tx_power + self.gain - fspl(d, self.f) + self.gain
cpe210 = Device(CPE210_F, CPE210_P_TX, CPE210_G_TX)
cpe510 = Device(CPE510_F, CPE510_P_TX, CPE510_G_TX)
Losses:
display(cpe210.p_rx(d))
display(cpe510.p_rx(d))
Losses at 20, 15 and 5 km:
data = {
("", "Device"): ["CPE210", "CPE510"], # Empty first level for consistency
("P_rx (dB)", "5 km"): [cpe210.p_rx(5e3).evalf(n=3), cpe510.p_rx(5e3).evalf(n=3)],
("P_rx (dB)", "15 km"): [cpe210.p_rx(15e3).evalf(n=3), cpe510.p_rx(15e3).evalf(n=3)],
("P_rx (dB)", "20 km"): [cpe210.p_rx(20e3).evalf(n=3), cpe510.p_rx(20e3).evalf(n=3)],
}
df = pd.DataFrame(data)
display(df)
P_rx (dB) | ||||
---|---|---|---|---|
Device | 5 km | 15 km | 20 km | |
0 | CPE210 | -11.2 | -20.7 | -23.2 |
1 | CPE510 | -8.67 | -18.2 | -20.7 |
CPE510 has less loss, so we should go for CPE510.
Other aspects that could speak for 5 GHz, even 2.4 GHz can penetrate obstacles easily and may have a better range in indoor environments:
other wireless technologies are operating in the 2.4 GHz spectrum. This causes interference, and thus, the noise in the receiver will be higher.
The Fresnel zone of 2.4 GHz is larger than the Fresnel zone of 5 GHz. This increases the probability of obstacles disturbing the LOS.
According to the datasheet available on this page, CPE510 has about 5 dB less return loss on average for vertical polarization in the operating frequency range.
the datasheet and claimed values are not precise enough 🙂
more info on this forum post